

Conclusion

A 4x4 column is adequate for the 4,800-pound axial design load and the stated height and support conditions. In fact, a greater column spacing could be used. Note that the analysis was performed with a solid sawn column of rectangular dimension. If a nonrectangular column is used, buckling must be analyzed in the weak-axis direction in consideration of the distance between lateral supports, if any, in that direction. If a built-up column is used, it is NOT treated the same way as a solid column. Even if the dimensions are nearly the same, the built-up column is more susceptible to buckling due to slippage between adjacent members as flexure occurs in response to buckling (only if unbraced in the weak-axis direction of the built-up members). Slippage depends on how well the built-up members are fastened together, which is accounted for by the use of an additional adjustment (reduction) factor applied to the C_p equation (see Section 5.5.5 and NDS•15.3).

EXAMPLE 5.9

Simply Supported Sloped Rafter Design

	Given	8:12 roof slope Design loads (see Dead load Roof snow load	span is 12 ft (actual sloped span is 14.4 ft) Chapter 3): = 10 psf	
	Find	Minimum rafter size using No. 2 Douglas-Fir-Larch (refer to Figure 5.7 for load diagram).		
	Solution			
	1.	Evaluate load combinations applicable to rafter design (see Chapter 3, Table 3.1):		
		The load combinations to consider and initial assessment based on the magnitude of the given design loads follows		
		$D + (L_r \text{ or } S)$	Controls rafter design in inward-bending direction (compression side of rafter laterally supported); L_r can be ignored since the snow load magnitude is greater.	
		$0.6D + W_u$	May control rafter design in outward-bending direction since the compression side now has no lateral bracing unless specified; also important to rafter connections at the bearing wall and ridge beam.	
		$\mathbf{D} + \mathbf{W}$	Not controlling by inspection; gravity load $D + S$ controls in the inward-bending direction.	
	2.	Determine relevant lumber property values (NDS-S, Table 4A).		
		$\begin{array}{l} F_b &= 900 \ psi \\ F_v &= 95 \ psi \\ E &= 1.6 \ x \ 10^6 \end{array}$	⁵ psi	